欢迎访问灯榜文库!投稿QQ:511112889

人教版八年级数学下册教案免费

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

人教版八年级数学下册教案免费范文5篇

数学主要的目标是公众的利益和自然现象的解释。在数学里,分辨何是重要,何事不重要,知所选择是很重要的。这里给大家分享一些关于人教版八年级数学下册教案免费,供大家参考学习。

人教版八年级数学下册教案免费

人教版八年级数学下册教案免费精选篇1

教学目标:

知识目标:

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

能力目标:

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感目标:

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学难点:

理解函数的概念。

能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

……

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

二、新课学习

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

②给定一个V值,你能求出相应的S值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

三、随堂练习

书P152页 随堂练习1、2、3

四、本课小结

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

图象;(2)表格;(3)关系式。

五、探究活动

为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:Y=1.8x-6或)

六、课后作业

习题6.1

人教版八年级数学下册教案免费精选篇2

【教学目标】

1、了解三角形的中位线的概念

2、了解三角形的中位线的性质

3、探索三角形的中位线的性质的一些简单的应用

【教学重点、难点】

重点:三角形的中位线定理。

难点:三角形的中位线定理的证明中添加辅助线的思想方法。

【教学过程】

(一)创设情景,引入新课

1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

3、引导学生概括出中位线的概念。

问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

4、猜想:DE与BC的关系?(位置关系与数量关系)

(二)、师生互动,探究新知

1、证明你的猜想

引导学生写出已知,求证,并启发分析。

(已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

启发2:证明线段的倍分的方法有哪些?(截长或补短)

学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

∴DF∥BC(根据什么?),

∴DE 1/2BC

2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

(三)学以致用、落实新知

1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

求证:四边形EFGH是平行四边形。

启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

证明:如图,连接AC。

∵EF是⊿ABC的中位线,

∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。你能得出什么结论?

(四)学生练习,巩固新知

如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

(五)小结回顾,反思提高

今天你学到了什么?还有什么困惑?

人教版八年级数学下册教案免费精选篇3

学习目标(学习重点):

1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2、运用菱形的识别方法进行有关推理.

补充例题:

例1、 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

例2、如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由.

例3、如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

课后续助:

一、填空题

1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥ CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1、如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

2、如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直吗?为什么?

(2) 四边形ABCD是菱形 吗?

3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

人教版八年级数学下册教案免费精选篇4

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学准备:计算器,投影片等

教学过程:

一、创设情境

1、投影课本P138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:x1, x2, x3,,xn,其平均数为

则s2= ,

而s= 称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

人教版八年级数学下册教案免费精选篇5

教学目标:

知识目标:

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

能力目标:

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感目标:

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学难点:

理解函数的概念。

能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

……

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

二、新课学习

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

②给定一个V值,你能求出相应的S值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

三、随堂练习

书P152页 随堂练习1、2、3

四、本课小结

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

(1)图象;(2)表格;(3)关系式。

五、探究活动

为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1、2元;超过10吨时,超过的部分按每吨1、8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:Y=1、8x-6或)

六、课后作业

习题6.1

61842
领取福利

微信扫码领取福利

微信扫码分享