欢迎访问灯榜文库!投稿QQ:511112889
首页 > 学习 > 初中 > 初一 >

七年级数学知识点归纳整理

分享 时间: 加入收藏 我要投稿 点赞

在漫长的学习生涯中,不管我们要学什么,都需要掌握一些知识点,知识点也可以通俗的理解为重要的内容。掌握知识点是我们提高成绩的关键!下面小编为大家带来七年级数学知识点归纳,希望对您有所帮助!

七年级数学知识点归纳

第一章 有理数

1.1正数和负数

①把0以外的数分为正数和负数。0是正数与负数的分界。

②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

1.2有理数

1.2.1有理数

①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

1.2.2数轴

①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数

①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数 负数的相反数是正数

1.2.4绝对值

①绝对值 |a|

②性质:正数的绝对值是它的本身

负数的绝对值的它的相反数

0的绝对值的0

1.2.5数的大小比较

①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

1.3.2有理数的减法

①减去一个数,等于加这个数的相反数。a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

1.4.2有理数的除法

①除以一个不等0的数,等于乘以这个数的倒数。

②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

1.5有理数的乘方

1.5.1乘方

①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

②负数的奇次幂是负数,负数的偶次幂的正数。

③正数的任何次幂都是正数,0的任何正整数次幂都是0。

④做有理数的混合运算时,应注意以下运算顺序:

1.先乘方,再乘除,最后加减;

2.同级运算,从左到右进行;

3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

1.5.2科学记数法。

①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

1.5.3近似数

①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

②近似数与准确数的接近程度,可以用精确度表示。

③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

第二章 整式的加减

2.1整式

①单项式:表示数或字母积的式子

②单项式的系数:单项式中的数字因数

③单项式的次数:一个单项式中,所有字母的指数和

④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

⑤多项式里次数最高项的次数,叫做这个多项式的次数。

⑥单项式与多项式统称整式。

2.2 整式的加减

①同类项:所含字母相同,而且相同字母的次数相同的单项式。

②把多项式中的同类项合并成一项,叫做合并同类项。

③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

初中七年级数学知识点

第一章 丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律 加法结合律

乘法交换律 乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

第三章 整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

2、整式:单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章 基本平面图形

2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

第五章 一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

6、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

第六章 数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初中七年级数学重要知识点

1、整式的乘除的公式运用(六条)及逆运用(数的计算)。

(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a—p==

2、单项式与单项式、多项式相乘的法则。

3、整式的乘法公式(两条)。

平方差公式:(a+b)(a—b)=

完全平方公式:(a+b)2(a—b)2

常用公式:(x+m)(x+n)=

4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

5、互为余角和互为补角和

6、两直线平行的条件:(角的关系线的平行)

①相等,两直线平行;

②相等,两直线平行;

③互补,两直线平行。

7、平行线的性质:两直线平行。(线的平行

8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

9、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。

10、三角形

(1)三边关系:角的关系)

(2)内角关系:

(3)三角形的三条重要线段:

(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)

(5)全等三角形的性质:

(6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:

(7)等边三角形:

11、会判轴对称图形,会根据画对称图形,(或在方格中画)

12、常见的轴对称图形有:

13、(1)等腰三角形:对称轴,性质

(2)线段:对称轴,性质

(3)角:对称轴,性质

14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线

(4)作角的平分线(5)作三角形

15、事件的分类:,会求各种事件的概率

(1)摸球:P(摸某种球)=

(2)摸牌:P(摸某种牌)=

(3)转盘:P(指向某个区域)=

(4)抛骰子:P(抛出某个点数)=

(5)方格(面积):P(停留某个区域)=

16、必然事件不可能事件,不确定事件

17、方法归纳:(1)求边相等可以利用

(2)求角相等可以利用。

(3)计算简便可以利用。

18、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

201536
领取福利

微信扫码领取福利

微信扫码分享