欢迎访问灯榜文库!投稿QQ:511112889
首页 > 学习 > 高中 > 高二 >

与高二数学必修五的相关知识点

分享 时间: 加入收藏 我要投稿 点赞

我们要学会独立地支配学习时间,自觉地、主动地、生动活泼地学习,还要注意思维能力、创造能力、组织管理能力、表达能力的培养,为将来适应社会工作打下良好的基础。以下是小编给大家整理的与高二数学必修五的相关知识点,希望大家能够喜欢!

与高二数学必修五的相关知识点1

数列定义:

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d(1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数。

解释说明:

从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

推论公式:

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

基本公式:

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

与高二数学必修五的相关知识点2

一、不等式的性质

1.两个实数a与b之间的大小关系

2.不等式的性质

(4)(乘法单调性)

3.绝对值不等式的性质

(2)如果a>0,那么

(3)|a?b|=|a|?|b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的证明

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

2.不等式的证明方法

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性.

(3)注意代数式中未知数的取值范围.

3.不等式的同解性

与高二数学必修五的相关知识点3

1、圆的定义

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(x-a)^2+(y-b)^2=r^2

(1)标准方程,圆心(a,b),半径为r;

(2)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

练习题:

2.若圆(x-a)2+(y-b)2=r2过原点,则()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】选B.因为圆过原点,所以(0,0)满足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

与高二数学必修五的相关知识点相关文章

★ 高二数学必修5知识点总结

★ 高二数学必修5数列知识点

★ 高中数学学霸提分秘籍:必修五知识点总结

★ 高中数学必修5数列知识点总结

★ 高中数学必修5全部公式

★ 高二数学必修五公式

★ 高二数学整体知识总结

★ 高二数学知识点总结

★ 高中数学必修5目录

★ 高中数学必修5公式总结

212823
领取福利

微信扫码领取福利

微信扫码分享