欢迎访问灯榜文库!投稿QQ:511112889
首页 > 学习 > 高中 > 高考 >

人教版高中数学知识点提纲_人教版高考数学复习提纲

分享 时间: 加入收藏 我要投稿 点赞

学好数学,就要做好课前预习,掌握听课主动权。课前准备的好坏,直接影响听课的效果,专心听讲,做好课堂笔记。下面小编给大家分享一些人教版高中数学知识点提纲,希望能够帮助大家,欢迎阅读!

人教版高中数学知识点提纲

人教版高中数学知识点提纲

一.集合与函数

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

二.不等式

18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

19.绝对值不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

三.数列

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四.三角函数

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.

(3)点的平移公式:点按向量平移到点,则.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.

五.平面向量

40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:

在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.

已知实数,且,则a=c,但在向量的数量积中没有.

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六.解析几何

43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

47.对不重合的两条直线

(建议在解题时,讨论后利用斜率和截距)

48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)

50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)

54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

七.立体几何

56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.

60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.

61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

63.两条异面直线所成的角的范围:0°<α≤90°

直线与平面所成的角的范围:0o≤α≤90°

二面角的平面角的取值范围:0°≤α≤180°

64.你知道异面直线上两点间的距离公式如何运用吗?

65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)

68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?

八.排列、组合和概率

69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.

70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.

71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)

72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0

73.求分布列的解答题你能把步骤写全吗?

74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)

75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

九.导数及其应用

76.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?具体步骤还记得吗?

77.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗?

78.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗

人教版高中数学知识点大全

一、平面的基本性质与推论

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线—平行、相交、异面;

直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面—平行、相交。

3、异面直线:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

四、导数

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

五、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式:an= a1qn-1an= akqn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

六、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

七、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性.

3、集合的表示:

(1)如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

4、集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N__或N+整数集Z有理数集Q实数集R

5.关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

6、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}=Φ

八、集合间的基本关系

1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。即A?A

②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

A∪φ=A,A∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

九、函数的有关概念

合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

2.构成函数的三要素:定义域、对应关系和值域

再注意:

(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:

①表达式相同;

②定义域一致(两点必须同时具备)

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的`数轴表示

4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

5.常用的函数表示法:解析法:图象法:列表法:

6.分段函数在定义域的不同部分上有不同的解析表达式的函数。

(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集

7.函数单调性

(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数。区间d称为y=f(x)的单调增区间< p="">

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.< p="">

注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

(A)定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间d上的单调性).(b)图象法(从图象上看升降)_注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.< p="">

8.函数的奇偶性

(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○则-x也一定是定义域内的一个自变量(即定义域关于原点对称)

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

补充不等式的解法与二次函数(方程)的性质

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

十、求动点的轨迹方程的基本步骤。

1、建立适当的坐标系,设出动点M的坐标;

2、写出点M的集合;

3、列出方程=0;

4、化简方程为最简形式;

5、检验。

十一、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

求动点轨迹方程的一般步骤:

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

数学到底该怎么才能学进去

学数学要一步步去学,知道自己哪里学会了,哪里还存在盲区,然后有所侧重的去学,不能盲目的去看书听课,结果什么都不会,做题时做一道错一道,那样学数学是最糟糕的方法。数学最好的方式就要自己去研究,自己尝试去做,不要指着老师去讲,听永远也没有自己做出来的印象深刻。

数学学习要先自己进行预习,看懂定义、公式、定理以后,再自己看例题,看会了就自己去做,把课后习题也做会了。做题时切记急躁,因为刚开始做题一般容易出错,所以慢不要紧,做重要的就是稳和准,把题目做对了是第一步,然后再去考虑提升做题速度。

老师讲新课时,即使自己预习会了,也要认真去听,因为可能讲到一些课外知识或者是新东西,当课后数学作业遇到不会的题目时,不要急于放弃,可以画图去做,也可以把公式写出来,然后尽量多尝试写几步,实在没有思路再做标记留着课堂认真听。

数学不开窍怎么才能学会

有些同学数学一直不好,一遇到不会的题目就去看答案,甚至连答案也要看上半天才能勉强看懂,又怎么能学会数学呢?数学不是靠老师讲或者是看几道题目的答案就能学会的,那样岂不是太简单了。数学还得靠自己去悟,多自己做题、多自己研究,而要想具备这个能力,那么还得把最基础的学好,就是公式、定理必须理解透彻了并背熟了。

数学学习没有捷径,首先就是把课本的知识全学会,然后再去做一些稍难一点的题目,如果基础没有打好,学数学还是有很大难度的。因此,数学差的同学,最应该做的就是掌握基础,书上的题目都做会,保证基础题不丢分,再去考虑难题。


人教版高中数学知识点提纲相关文章:

★ 人教版高一数学必修一复习提纲

★ 高中数学知识点提纲

★ 有哪些人教版高二数学复习提纲资料

★ 高一数学必修一知识提纲

★ 高一数学必修一复习提纲

★ 人教版高二数学上册必修知识点

★ 高一数学必修四知识点提纲

★ 高中数学必修一知识点总结

★ 高三数学复习知识点总结归纳

★ 2022高中数学必修一复习提纲

217065
领取福利

微信扫码领取福利

微信扫码分享