高中数学答题最重要的就是审题。审题的第一步就是读题。读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。
高中数学万能解题模板整理
1、适用条件:[直线过焦点],必有ecosa=(x-1)/(x+1),其中a为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则t=2k;
(2)若f(x)=m/(x+k)(m不为0),则t=2k;
(3)若f(x)=f(x+k)+f(x-k),则t=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在r上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4、函数奇偶性:
(1)对于属于r上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5、圆锥曲线中的范围问题
一、解题路线图
①设方程。
②解系数。
③得结论。
二、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
6)解析几何中的探索性问题
高中数学的答题技巧有哪些
1、剔除法
利用高中数学题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法
对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推破解法
利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则
将所要解答的高中数学问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。