近代数学是研究数量、结构、变化、空间以及信息等概念的一门学科。17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折。下面给大家分享一些关于近代数学相关内容,希望对大家有所帮助。
一.中国发展
1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。
中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。
最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。
1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。
三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。
1935年中国数学会成立大会在上海召开,共有33名代表出席。
1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。
解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。
在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;
在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;
在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:
在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。
此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。
1951年3月《中国数学学报》复刊(1952年改为《数学学报》)
1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。
1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。
60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。
1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。
1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。
1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。
1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。
1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。
1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。
1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
二.学科建立
1.17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折。
2.法国学者笛卡尔创立了解析几何学,把变量引进了数学,成为数学中的转折点。
3.英国科学家牛顿和德意志数学家莱布尼茨,分别独立地建立了微积分学,使精密的测量和变量计算有了可能。
4.解析几何发明后,数学进入一个新的以变数为主要研究对象的领域,称为“高等数学”。
近代数学相关内容相关文章:
★ 数学史数学手抄报内容
★ 2020高考北京数学试题分析大全
★ 以数学为主题的手抄报图片
★ 初一数学手抄报内容大全
★ 数学家小学生手抄报
★ 关于数学的手抄报资料
★ 《数学简史》心得体会
★ 数学世界手抄报内容
★ 数学文化手抄报内容精选
★ 中国历史常识大全(完整版)
上一篇:高考数学选择题答题技巧有哪些
下一篇:高考数学选择答题技巧方法