欢迎访问灯榜文库!投稿QQ:511112889

初一数学复习方法:四种方法值得一看

无敌客 分享 时间: 加入收藏 我要投稿 点赞

  初一数学是初中三年打基础的一年,能否在整个初中数学学习中游刃有余,初一数学的学习掌握尤为重要。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难后,就凸现出来。下面是小编给大家带来的初一数学复习方法:四种方法技巧值得一看,希望能够帮助到大家!

  初一数学主要知识点

  代数初步知识

  1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

  2. 几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

  (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

  (4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

  有理数

  凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  整式的加减

  单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  多项式:几个单项式的和叫多项式.

  多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  一元一次方程

  一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

  一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

  一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

  列方程解应用题的常用公式:

  (1)行程问题:距离=速度·时间;

  (2)工程问题:工作量=工效·工时;

  (3)比率问题:部分=全体·比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  (5)商品价格问题:售价=定价·折·0.1 ,利润=售价-成本;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1/3πR2h.

90822
领取福利

微信扫码领取福利

微信扫码分享