平行四边形(包括特殊的平行四边形)中各性质、判定定理繁多;几何证明的方法亦可多条,学生极易搞混。我们如何去灵活的记忆整理呢?下面小编给大家分享一些平行四边形四年级知识点,希望能够帮助大家,欢迎阅读!
平行四边形四年级知识1
平行四边形的性质:
平行四边形的对边平行且相等;
平行四边形的对角相等;
平行四边形的两条对角线互相平分;
平行四边形是中心对称图形,对称中心是两条对角线的交点;
平行四边形的判定:
两组对边分别相等的四边形是平行四边形;
两组对边分别平行的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
两条对角线互相平分的四边形是平行四边形;
矩 形
矩形特有的性质:
矩形的四个角都是直角;
矩形的对角线相等;
(外垂直内相等)
矩形的判定:
有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形;
菱 形
菱形特有的性质:
四条边都相等;
对角线互相垂直;
(外相等内垂直)
每条对角线平分一组对角;
菱形的判定:
一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形;
正 方 形
正方形特有的性质:
四条边都相等;
四个角都是90°;
对角线相等且互相垂直平分;
每条对角线平分一组对角。
正方形的判定:
四边相等,有三个角是直角的四边形是正方形;
一组邻边相等的矩形是正方形;
对角线互相垂直的矩形是正方形;
有一个角是直角的菱形是正方形;
对角线相等的菱形是正方形;
平行四边形四年级知识2
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
常见考法
(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
误区提醒
(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
平行四边形四年级知识3
一、特殊的平行四边形
1.矩形:
(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:
①有一个角是直角的平行四边形叫做矩形。②对角线相等的平行四边形是矩形。③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:
(1)定义 :邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:
3.正方形:
(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。 正方形既是矩形,又是菱形。
(3)正方形判定定理:
①对角线互相垂直平分且相等的四边形是正方形;
②一组邻边相等,一个角为直角的平行四边形是正方形;
③对角线互相垂直的矩形是正方形;
④邻边相等的矩形是正方形
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:
1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
三、判定一个四边形是特殊四边形的步骤:
常见考法
(1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;
(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;
(3)一些折叠问题;
(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。
误区提醒
(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;
(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;
(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);(3)再利用对角线长度求菱形的面积时,忘记乘;(3)判定一个四边形是特殊的平行四边形的条件不充分。
平行四边形四年级知识点相关文章:
★ 四年级数学上册知识点
★ 四年级数学三角形知识点归纳
★ 苏教版四年级数学期末复习知识点汇总
★ 做小学四年级数学上册知识点总结
★ 四年级数学上册重点知识导引,开学马上用得上!
★ 小学各年级数学知识点总结
★ 2020小学四年级上册数学知识点归纳
★ 小学四年级数学上册《平行四边形和梯形》教案优质范文3篇
★ 小学数学各年级知识点重点难点整理
★ 四年级数学下册知识点
上一篇:戏曲的知识点归纳2022