欢迎访问灯榜文库!投稿QQ:511112889
首页 > 学习 > 初中 > 初二 >

最新数学初二常考知识点精选

分享 时间: 加入收藏 我要投稿 点赞

数学这门科目与我们的生活息息相,学好数学对于我们每个同学来说都是非常重要的。那么初中生在初二的时候需要掌握哪些数学知识呢?下面小编为大家带来数学初二常考知识点精选,希望大家喜欢!

数学初二常考知识点

1全等三角形的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5边边边公理(SSS)有三边对应相等的两个三角形全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23推论3等边三角形的各角都相等,并且每一个角都等于60°

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的三角形是等边三角形

26推论2有一个角等于60°的等腰三角形是等边三角形

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角三角形斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

数学初二基础知识点

轴对称

1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2.性质

(1)成轴对称的两个图形全等;

(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

一次函数

(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

(二)函数三要素

1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

(三)一次函数的表示方法

1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3.图像法:用图象来表示函数关系的方法叫做图象法。

(四)一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

6.平移时:上加下减在末尾,左加右减在中间。

直角三角形

1.勾股定理及其逆定理

定理:直角三角形的两条直角边的等于的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2.含30°的直角三角形的边的性质

定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。

3.直角三角形斜边上的中线等于斜边的一半。

要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。

②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

图形的平移与旋转

1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2.平移性质

(1)图形平移前后的形状和大小没有变化,只是位置发生变化。

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

拓展阅读:初中数学提高解题速度的方法

认真仔细审题

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

做好归纳总结

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

熟悉习题内容

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

学会主动画图

画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

逐步增加难度

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

数学初二知识点总结归纳

平方根与立方根知识点

平方根:

概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。

因为(±23)=529,所以±23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?

概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。

开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。

一、算术平方根的概念

正数a有两个平方根(表示为?根,表示为a。0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0。”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:a,我们把其中正的平方根,叫做a的算术平方

(1)被开方数a表示非负数,即a≥0;

(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a<0时,a无意义。

如:=3,8是64的算术平方根,6无意义。9既表示对9进行开平方运算,也表示9的正的平方根。

二、平方根与算术平方根的区别在于

①定义不同;

②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示方法不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负.⑤0的平方根与算术平方根都是0.

三、例题讲解:

例1、求下列各数的算术平方根:

(1)100;

(2)49;

(3)0.8164

注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算

术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义)

用几何图形可以直观地表示算术平方根的意义如有一个面积为a(a应是非负数)、边长为

的正方形就表示a的算术平方根。

这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。

3、立方根

(1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。

数学初二常考知识点精选相关文章

★ 八年级数学必备知识点总结

★ 初二数学知识点归纳

★ 初二数学知识点归纳总结

★ 初二数学复习知识点笔记

★ 初二数学单元的知识点

★ 人教版初二数学知识点归纳

★ 初二数学部编版知识点总结

★ 八年级数学上册知识点总结

★ 初二数学知识点苏教版

★ 部编版八年级数学知识点

203953
领取福利

微信扫码领取福利

微信扫码分享