苏教版三年级上册数学电子课本(完整教材)
苏教版数学教材适用范围很广,除了在江苏本地使用外,在山西、安徽、陕西、广东等地均有使用,小学均为江苏教育出版社的教材。下面是小编为大家整理的苏教版三年级上册数学电子课本,希望对您有所帮助!
苏教版三年级上册数学电子课本
查看完整版可微信搜索公众号【5068教学资料】,关注后对话框回复【3】获取三年级语文、三年级数学、三年级英语电子课本资源。
小学三年级数学知识点整理
分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4、分数比较大小的方法
①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
5、分数加减法
①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。
②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。
小学三年级数学知识点
1、口算时要注意:
(1)0除以任何数(0除外)都等于0;
(2)0乘以任何数都得0;
(3)0加任何数都得任何数本身;
(4)任何数减0都得任何数本身。
2、没有余数的除法:
被除数÷除数=商
商×除数=被除数
被除数÷商=除数
有余数的除法:
被除数÷除数=商……余数
商×除数+余数=被除数
(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
(1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。
(2)一位数除三位数的笔算方法:先从被除数的位除起,如果位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。
(3)除法的验算方法:
没有余数的除法的验算方法:商×除数:被除数;
有余数的除法的验算方法:商×除数+余数=被除数。
4、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
学生如何学好三年级数学
1、计算是基础,基础要打牢:
三年级数学课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好数学的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。
就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。
2、应用题,重中之重:
从三年级起,数学课本中介绍了大量的数学专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。
现在许多五六年级同学数学水平提高非常困难,就是因为他们三年级的数学专题知识掌握的不牢靠。
3、学习方法很重要:
在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等数学知识,面对突然增大的数学信息量,学生可以有意识的培养自己复习,总结等良好的学习习惯;
同时,三年级是学生培养自己的数学学习方法的时间。在三年级接触学习大量数学知识的前提下,有意识地培养自己的学习方法对今后的数学学习有非常重要的帮助。
小学三年级数学学习方法
第一、加强小学三年级学生运用“数概念”的能力培养。
有不少小学数学的教学中,常只重算法,忽视数概念的掌握和算理的理解。因而只能机械地应用学过的东西,或简单地模仿做过的例题,不能在变化了情况下迁移;或者只知道一些定义,而不能全面掌握属于这一概念的东西。
第二、重视和加强发展小学三年级学生“空间关系”的知觉能力。
数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。例如三年级下册如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。
第三、观察活动:
所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。